Some papers indexed by the Science Citation Index (Expanded) since 1997 by Feng Qi

Some papers indexed by the Science Citation Index (Expanded) since 1997


Some papers indexed by the Science Citation Index (Expanded) in 2018

  1. Feng Qi, Abdullah Akkurt, and Hüseyin Yildirim, Catalan numbers, $k$-gamma and $k$-beta functions, and parametric integrals, Journal of Computational Analysis and Applications 25 (2018), no. 6, 1036–1042. (WOS:???)
  2. Feng Qi, Viera Čerňanová, Xiao-Ting Shi, and Bai-Ni Guo, Some properties of central Delannoy numbers, Journal of Computational and Applied Mathematics 328 (2018), 101–115; Available online at https://doi.org/10.1016/j.cam.2017.07.013. (WOS:???)
  3. Feng Qi and Bai-Ni Guo, A diagonal recurrence relation for the Stirling numbers of the first kind, Applicable Analysis and Discrete Mathematics 12 (2018), in press. (WOS:???)
  4. Feng Qi and Bai-Ni Guo, Lévy–Khintchine representation of Toader–Qi mean, Mathematical Inequalities & Applications 21 (2018), in press. (WOS:???)
  5. Feng Qi and Bai-Ni Guo, The reciprocal of the weighted geometric mean of many positive numbers is a Stieltjes function, Quaestiones Mathematicae 41 (2018), in press; Available online at http://dx.doi.org/???. (WOS:???)
  6. Feng Qi and Dongkyu Lim, Integral representations of bivariate complex geometric mean and their applications, Journal of Computational and Applied Mathematics 330 (2018), 41–58; Available online at http://dx.doi.org/10.1016/j.cam.2017.08.005. (WOS:???)
  7. Feng Qi, Dongkyu Lim, and Bai-Ni Guo, Explicit formulas and identities for the Bell polynomials and a sequence of polynomials applied to differential equations, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales-Serie A: Matemáticas 112 (2018), in press; Available online at http://dx.doi.org/10.1007/s13398-017-0427-2. (WOS:???)
  8. Feng Qi, Cristinel Mortici, and Bai-Ni Guo, Some properties of a sequence arising from geometric probability for pairs of hyperplanes intersecting with a convex body, Computational & Applied Mathematics 37 (2018), in press; Available online at http://dx.doi.org/10.1007/s40314-017-0448-7. (WOS:???)
  9. Feng Qi, Xiao-Ting Shi, and Bai-Ni Guo, Integral representations of the large and little Schröder numbers, Indian Journal of Pure and Applied Mathematics 49 (2018), in press. (WOS:???)
  10. Feng Qi, Jiao-Lian Zhao, and Bai-Ni Guo, Closed forms for derangement numbers in terms of the Hessenberg determinants, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales-Serie A: Matemáticas 112 (2018), in press; Available online at http://dx.doi.org/10.1007/s13398-017-0401-z. (WOS:???)
  11. Li Yin and Feng Qi, Some functional inequalities for generalized error function, Journal of Computational Analysis and Applications 25 (2018), no. 7, 1366–1372. (WOS:???)

Some papers indexed by the Science Citation Index (Expanded) in 2017

  1. Feng Qi, Some inequalities for the Bell numbers, Proceedings of the Indian Academy of Sciences (Mathematical Sciences) 127 (2017), no. 4, 551–564; Available online at http://dx.doi.org/10.1007/s12044-017-0355-2. (WOS:000409087800001)
  2. Feng Qi, Serkan Araci, and Mehmet Acıkgöz, On an analogue of Euler polynomials and related to extended fermionic $p$-adic integrals on $\mathbb{Z}_p$, Iranian Journal of Science and Technology, Transaction A: Science 41 (2017), in press; Available online at https://doi.org/10.1007/s40995-017-0274-1. (WOS:???)
  3. Feng Qi and Bai-Ni Guo, Explicit formulas and recurrence relations for higher order Eulerian polynomials, Indagationes Mathematicae 28 (2017), no. 4, 884–891; Available online at https://doi.org/10.1016/j.indag.2017.06.010. (WOS:000408178000012)
  4. Feng Qi and Bai-Ni Guo, Explicit formulas for special values of the Bell polynomials of the second kind and for the Euler numbers and polynomials, Mediterranean Journal of Mathematics 14 (2017), no. 3, Article 140, 14 pages; Available online at http://dx.doi.org/10.1007/s00009-017-0939-1. (WOS:000403338100041)
  5. Feng Qi and Bai-Ni Guo, Integral representations and complete monotonicity of remainders of the Binet and Stirling formulas for the gamma function, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales-Serie A: Matemáticas 111 (2017), no. 2, 425–434; Available online at http://dx.doi.org/10.1007/s13398-016-0302-6. (WOS:000396845100008)
  6. Feng Qi and Bai-Ni Guo, The reciprocal of the geometric mean of many positive numbers is a Stieltjes transform, Journal of Computational and Applied Mathematics 311 (2017), 165–170; Available online at http://dx.doi.org/10.1016/j.cam.2016.07.006. (WOS:000386403000011)
  7. Feng Qi, Xiao-Ting Shi, Fang-Fang Liu, and Dmitry V. Kruchinin, Several formulas for special values of the Bell polynomials of the second kind and applications, Journal of Applied Analysis and Computation 7 (2017), no. 3, 857–871; Available online at http://dx.doi.org/10.11948/2017054. (WOS:000405793700005)
  8. Feng Qi, Xiao-Ting Shi, Fang-Fang Liu, and Zhen-Hang Yang, A double inequality for an integral mean in terms of the exponential and logarithmic means, Periodica Mathematica Hungarica 72 (2017), in press; Available online at http://dx.doi.org/10.1007/s10998-016-0181-9. (WOS:???)
  9. Feng Qi, Xiao-Ting Shi, Mansour Mahmoud, and Fang-Fang Liu, The Catalan numbers: a generalization, an exponential representation, and some properties, Journal of Computational Analysis and Applications 23 (2017), no. 5, 937–944. (WOS:000392909300012)
  10. Praveen Agarwal, Feng Qi, Mehar Chand, and Shilpi Jain, Certain integrals involving the generalized hypergeometric function and the Laguerre polynomials, Journal of Computational and Applied Mathematics 313 (2017), 307–317; Available online at http://dx.doi.org/10.1016/j.cam.2016.09.034. (WOS:000390501600022)
  11. Ye Shuang and Feng Qi, Integral inequalities of the Hermite–Hadamard type for $(\alpha,m)$-GA-convex functions, Journal of Nonlinear Sciences and Applications 10 (2017), no. 4, 1854–1860; Available online at http://dx.doi.org/10.22436/jnsa.010.04.45. (WOS:000407569900045)
  12. Shu-Hong Wang and Feng Qi, Hermite–Hadamard type inequalities for $s$-convex functions via Riemann-Liouville fractional integrals, Journal of Computational Analysis and Applications 22 (2017), no. 6, 1124–1134. (WOS:000392908700012)
  13. Jiao-Lian Zhao and Feng Qi, Two explicit formulas for the generalized Motzkin numbers, Journal of Inequalities and Applications 2017, 2017:44, 8 pages; Available online at http://dx.doi.org/10.1186/s13660-017-1313-3. (WOS:000394375100002)
  14. Jiao-Lian Zhao, Jing-Lin Wang, and Feng Qi, Derivative polynomials of a function related to the Apostol–Euler and Frobenius–Euler numbers, Journal of Nonlinear Sciences and Applications 10 (2017), no. 4, 1345–1349; Available online at http://dx.doi.org/10.22436/jnsa.010.04.06. (WOS:000407569900006)
  15. Chun-Ying He, Yan Wang, Bo-Yan Xi, and Feng Qi, Hermite-Hadamard type inequalities for $(\alpha,m)$-HA and strongly $(\alpha,m)$-GA convex functions, Journal of Nonlinear Sciences and Applications 10 (2017), no. 1, 205–214; Available online at http://dx.doi.org/10.22436/jnsa.010.01.20. (WOS:000396610300020)
  16. Jun Zhang, Zhi-Li Pei, Gao-Chao Xu, Xiao-Hui Zhou, and Feng Qi, Integral inequalities of extended Simpson type for $(\alpha,m)$-$\varepsilon$-convex functions, Journal of Nonlinear Sciences and Applications 10 (2017), no. 1, 122–129; Available online at http://dx.doi.org/10.22436/jnsa.010.01.12. (WOS:000396610300012)

Twenty-one papers indexed by the Science Citation Index (Expanded) in 2016

  1. Feng Qi, A completely monotonic function involving the gamma and trigamma functions, Kuwait Journal of Science 43 (2016), no. 3, 32–40. (WOS:000386468000004)
  2. Feng Qi, An explicit formula for the Bell numbers in terms of the Lah and Stirling numbers, Mediterranean Journal of Mathematics 13 (2016), no. 5, 2795–2800; Available online at http://dx.doi.org/10.1007/s00009-015-0655-7. (WOS:000385146000030)
  3. Feng Qi, Diagonal recurrence relations for the Stirling numbers of the first kind, Contributions to Discrete Mathematics 11 (2016), no. 1, 22–30; Available online at http://hdl.handle.net/10515/sy5wh2dx6 and http://dx.doi.org/10515/sy5wh2dx6. (WOS:000386681700004)
  4. Feng Qi, Diagonal recurrence relations, inequalities, and monotonicity related to the Stirling numbers of the second kind, Mathematical Inequalities & Applications 19 (2016), no. 1, 313–323; Available online at http://dx.doi.org/10.7153/mia-19-23. (WOS:000374170000023)
  5. Feng Qi and Robin J. Chapman, Two closed forms for the Bernoulli polynomials, Journal of Number Theory 159 (2016), 89–100; Available online at http://dx.doi.org/10.1016/j.jnt.2015.07.021. (WOS:000364106800007)
  6. Feng Qi and Bai-Ni Guo, Complete monotonicity of divided differences of the di- and tri-gamma functions with applications, Georgian Mathematical Journal 23 (2016), no. 2, 279–291; Available online at http://dx.doi.org/10.1515/gmj-2016-0004. (WOS:000377453300013)
  7. Feng Qi, Lee-Chae Jang, and Hyuck-In Kwon, Some new and explicit identities related with the Appell-type degenerate $q$-Changhee polynomials, Advances in Difference Equations (2016), 2016:180, 8 pages; Available online at http://dx.doi.org/10.1186/s13662-016-0912-5. (WOS:000384108200001)
  8. Feng Qi and Wen-Hui Li, Integral representations and properties of some functions involving the logarithmic function, Filomat 30 (2016), no. 7, 1659–1674; Available online at http://dx.doi.org/10.2298/FIL1607659Q. (WOS:000382870500003)
  9. Feng Qi, Mansour Mahmoud, Xiao-Ting Shi, and Fang-Fang Liu, Some properties of the Catalan-Qi function related to the Catalan numbers, SpringerPlus (2016), 5:1126, 20 pages; Available online at http://dx.doi.org/10.1186/s40064-016-2793-1. (WOS:000381635900019)
  10. Feng Qi, Xiao-Ting Shi, and Bai-Ni Guo, Some properties of the Schröder numbers, Indian Journal of Pure and Applied Mathematics 47 (2016), no. 4, 717–732; Available online at http://dx.doi.org/10.1007/s13226-016-0211-6. (WOS:000391486000011)
  11. Shu-Ping Bai, Feng Qi, and Shu-Hong Wang, Some new integral inequalities of Hermite–Hadamard type for $(\alpha,m;P)$-convex functions on co-ordinates, Journal of Applied Analysis and Computation 6 (2016), no. 1, 171–178; Available online at http://dx.doi.org/10.11948/2016014. (WOS:000369109800014)
  12. Yu-Mei Bai and Feng Qi, Some integral inequalities of the Hermite–Hadamard type for log-convex functions on co-ordinates, Journal of Nonlinear Sciences and Applications 9 (2016), no. 12, 5900–5908. (WOS:000392386200001)
  13. Xu-Yang Guo, Feng Qi, and Bo-Yan Xi, Some new inequalities of Hermite–Hadamard type for geometrically mean convex functions on the co-ordinates, Journal of Computational Analysis and Applications 21 (2016), no. 1, 144–155. (WOS:000368959900011)
  14. Dongkyu Lim and Feng Qi, On the Appell type $\lambda$-Changhee polynomials, Journal of Nonlinear Sciences and Applications 9 (2016), no. 4, 1872–1876. (WOS:000373507700040)
  15. Ye Shuang, Feng Qi, and Yan Wang, Some inequalities of Hermite–Hadamard type for functions whose second derivatives are $(\alpha,m)$-convex, Journal of Nonlinear Sciences and Applications 9 (2016), no. 1, 139–148. (WOS:000367399600013)
  16. Ying Wu and Feng Qi, On some Hermite-Hadamard type inequalities for $(s, \text{QC})$-convex functions, SpringerPlus (2016) 5:49, 13 pages; Available online at http://dx.doi.org/10.1186/s40064-016-1676-9. (WOS:000368877300004)
  17. Ying Wu, Feng Qi, Zhi-Li Pei, and Shu-Ping Bai, Hermite–Hadamard type integral inequalities via $(s,m)$-$P$-convexity on co-ordinates, Journal of Nonlinear Sciences and Applications 9 (2016), no. 3, 876–884. (WOS:000367405200017)
  18. Jun Zhang, Feng Qi, Gao-Chao Xu, and Zhi-Li Pei, Hermite–Hadamard type inequalities for $n$-times differentiable and geometrically quasi-convex functions, SpringerPlus (2016) 5:524, 6 pages; Available online at http://dx.doi.org/10.1186/s40064-016-2083-y. (WOS:000375703600012)
  19. Bai-Ni Guo, István Mezö, and Feng Qi, An explicit formula for the Bernoulli polynomials in terms of the $r$-Stirling numbers of the second kind, Rocky Mountain Journal of Mathematics 46 (2016), no. 6, 1919–1923; Available online at http://dx.doi.org/10.1216/RMJ-2016-46-6-1919. (WOS:000392131800007)
  20. Wei-Dong Jiang, Jian Cao, and Feng Qi, Sharp inequalities for bounding Seiffert mean in terms of the arithmetic, centroidal, and contra-harmonic means, Mathematica Slovaca 66 (2016), no. 5, 1115–1118; Available online at http://dx.doi.org/10.1515/ms-2016-0208. (WOS:???)
  21. Ye Shuang, Yan Wang, and Feng Qi, Integral inequalities of Simpson’s type for $(\alpha,m)$-convex functions, Journal of Nonlinear Sciences and Applications (2016), no. 12, 6364–6370. (WOS:000392386200036)

Twenty-four papers indexed by the Science Citation Index (Expanded) in 2015

  1. Feng Qi, Complete monotonicity of functions involving the $q$-trigamma and $q$-tetragamma functions, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales-Serie A: Matemáticas 109 (2015), no. 2, 419–429; Available online at http://dx.doi.org/10.1007/s13398-014-0193-3. (WOS:000359660000015)
  2. Feng Qi, Derivatives of tangent function and tangent numbers, Applied Mathematics and Computation 268 (2015), 844–858; Available online at http://dx.doi.org/10.1016/j.amc.2015.06.123. (WOS:000361769000075)
  3. Feng Qi, Pólya type integral inequalities: origin, variants, proofs, refinements, generalizations, equivalences, and applications, Mathematical Inequalities & Applications 18 (2015), no. 1, 1–38; Available online at http://dx.doi.org/10.7153/mia-18-01.(WOS:000355197100001)
  4. Feng Qi, Properties of modified Bessel functions and completely monotonic degrees of differences between exponential and trigamma functions, Mathematical Inequalities & Applications 18 (2015), no. 2, 493–518; Available online at http://dx.doi.org/10.7153/mia-18-37.(WOS:000361571700009)
  5. Feng Qi and Wen-Hui Li, A logarithmically completely monotonic function involving the ratio of gamma functions, Journal of Applied Analysis and Computation 5 (2015), no. 4, 626–634; Available online at http://dx.doi.org/10.11948/2015049. (WOS:000362727600008)
  6. Feng Qi and Cristinel Mortici, Some best approximation formulas and inequalities for the Wallis ratio, Applied Mathematics and Computation 253 (2015), 363–368; Available online at http://dx.doi.org/10.1016/j.amc.2014.12.039.(WOS:000349362400032)
  7. Feng Qi and Cristinel Mortici, Some inequalities for the trigamma function in terms of the digamma function, Applied Mathematics and Computation 271 (2015), 502–511; Available online at http://dx.doi.org/10.1016/j.amc.2015.09.039. (WOS:000364538300044)
  8. Feng Qi and Xiao-Jing Zhang, An integral representation, some inequalities, and complete monotonicity of the Bernoulli numbers of the second kind, Bulletin of the Korean Mathematical Society 52 (2015), no. 3, 987–998; Available online at http://dx.doi.org/10.4134/BKMS.2015.52.3.987. (WOS:000355776600025)
  9. Feng Qi, Xiao-Jing Zhang, and Wen-Hui Li, An elementary proof of the weighted geometric mean being a Bernstein function, University Politehnica of Bucharest Scientific Bulletin Series A—Applied Mathematics and Physics 77 (2015), no. 1, 35–38. (WOS:000350851200004)
  10. Feng Qi, Tian-Yu Zhang, and Bo-Yan Xi, Hermite–Hadamard-type integral inequalities for functions whose first derivatives are convex, Ukrainian Mathematical Journal 67 (2015), no. 4, 625–640; Available online at http://dx.doi.org/10.1007/s11253-015-1103-3. (WOS:000366157700009)
  11. Feng Qi and Miao-Miao Zheng, Explicit expressions for a family of the Bell polynomials and applications, Applied Mathematics and Computation 258 (2015), 597–607; Available online at http://dx.doi.org/10.1016/j.amc.2015.02.027.(WOS:000351668500055)
  12. Ling Chun and Feng Qi, Inequalities of Simpson type for functions whose third derivatives are extended $s$-convex functions and applications to means, Journal of Computational Analysis and Applications 19 (2015), no. 3, 555–569. (WOS:000348559300015)
  13. Bai-Ni Guo, Feng Qi, and Qiu-Ming Luo, The additivity of polygamma functions, Filomat 29 (2015), no. 5, 1063–1066; Available online at http://dx.doi.org/10.2298/FIL1505063G. (WOS:000355847500013)
  14. Bai-Ni Guo, Feng Qi, Jiao-Lian Zhao, and Qiu-Ming Luo, Sharp inequalities for polygamma functions, Mathematica Slovaca 65 (2015), no. 1, 103–120; Available online at http://dx.doi.org/10.1515/ms-2015-0010. (WOS:000355583100010)
  15. Xu-Yang Guo, Feng Qi, and Bo-Yan Xi, Some new Hermite–Hadamard type inequalities for geometrically quasi-convex functions on co-ordinates, Journal of Nonlinear Sciences and Applications 8 (2015), no. 5, 740–749. (WOS:000359986800025)
  16. Cristinel Mortici and Feng Qi, Asymptotic formulas and inequalities for the gamma function in terms of the tri-gamma function, Results in Mathematics 67 (2015), no. 3-4, 395–402; Available online at http://dx.doi.org/10.1007/s00025-015-0439-1. (WOS:000354246500008)
  17. Chun-Fu Wei and Feng Qi, Several closed expressions for the Euler numbers, Journal of Inequalities and Applications 2015, 2015:219, 8 pages; Available online at http://dx.doi.org/10.1186/s13660-015-0738-9. (WOS:000359838600001)
  18. Ying Wu, Feng Qi, and Da-Wei Niu, Integral inequalities of Hermite–Hadamard type for the product of strongly logarithmically convex and other convex functions, Maejo International Journal of Science and Technology 9 (2015), no. 3, 394–402. (WOS:000366995400001)
  19. Bo-Yan Xi and Feng Qi, Inequalities of Hermite-Hadamard type for extended $s$-convex functions and applications to means, Journal of Nonlinear and Convex Analysis 16 (2015), no. 5, 873–890. (WOS:000356555700006)
  20. Bo-Yan Xi, Feng Qi, and Tian-Yu Zhang, Some inequalities of Hermite–Hadamard type for $m$-harmonic-arithmetically convex functions, ScienceAsia 41 (2015), no. 5, 357–361; Available online at http://dx.doi.org/10.2306/scienceasia1513-1874.2015.41.357. (WOS:000367281700010)
  21. Hong-Ping Yin and Feng Qi, Hermite–Hadamard type inequalities for the product of $(\alpha,m)$-convex functions, Journal of Nonlinear Sciences and Applications 8 (2015), no. 3, 231–236. (WOS:000352726900007)
  22. Ai-Ping Ji, Tian-Yu Zhang, and Feng Qi, Integral inequalities of Hermite-Hadamard type for $(\alpha,m)$-GA-convex functions, Journal of Computational Analysis and Applications 18 (2015), no. 2, 255–265. (WOS:000348558500005)
  23. Lei-Lei Wang, Bo-Yan Xi, and Feng Qi, On $\alpha$-locally doubly diagonally dominant matrices, University Politehnica of Bucharest Scientific Bulletin Series A—Applied Mathematics and Physics 77 (2015), no. 2, 163–172. (WOS:000355574100016)
  24. Hong-Ping Yin, Huan-Nan Shi, and Feng Qi, On Schur $m$-power convexity for ratios of some means, Journal of Mathematical Inequalities 9 (2015), no. 1, 145–153; Available online at http://dx.doi.org/10.7153/jmi-09-14. (WOS:000353524600014)

Twenty-three papers indexed by the Science Citation Index (Expanded) in 2014

  1. Feng Qi, A completely monotonic function related to the $q$-trigamma function, University Politehnica of Bucharest Scientific Bulletin Series A—Applied Mathematics and Physics 76 (2014), no. 1, 107–114. (WOS:000332914700011)
  2. Feng Qi, An integral representation, complete monotonicity, and inequalities of Cauchy numbers of the second kind, Journal of Number Theory 144 (2014), 244–255; Available online at http://dx.doi.org/10.1016/j.jnt.2014.05.009. (WOS:000339984700013)
  3. Feng Qi, Explicit formulas for computing Bernoulli numbers of the second kind and Stirling numbers of the first kind, Filomat 28 (2014), no. 2, 319–327; Available online at http://dx.doi.org/10.2298/FIL1402319O. (WOS:000343240200011)
  4. Feng Qi, Integral representations and complete monotonicity related to the remainder of Burnside’s formula for the gamma function, Journal of Computational and Applied Mathematics 268 (2014), 155–167; Available online at http://dx.doi.org/10.1016/j.cam.2014.03.004. (WOS:000335636300013)
  5. Feng Qi and Wen-Hui Li, A unified proof of several inequalities and some new inequalities involving Neuman-Sándor mean, Miskolc Mathematical Notes 15 (2014), no. 2, 665–675. (WOS:000348602900036)
  6. Feng Qi and Qiu-Ming Luo, Complete monotonicity of a function involving the gamma function and applications, Periodica Mathematica Hungarica 69 (2014), no. 2, 159–169; Available online at http://dx.doi.org/10.1007/s10998-014-0056-x. (WOS:000345288600008)
  7. Feng Qi and Bo-Yan Xi, Some Hermite-Hadamard type inequalities for geometrically quasi-convex functions, Proceedings of the Indian Academy of Sciences (Mathematical Sciences) 124 (2014), no. 3, 333–342; Available online at http://dx.doi.org/10.1007/s12044-014-0182-7. (WOS:000342169600005)
  8. Feng Qi, Xiao-Jing Zhang, and Wen-Hui Li, An integral representation for the weighted geometric mean and its applications, Acta Mathematica Sinica-English Series 30 (2014), no. 1, 61–68; Available online at http://dx.doi.org/10.1007/s10114-013-2547-8. (WOS:000328351900006)
  9. Feng Qi, Xiao-Jing Zhang, and Wen-Hui Li, Lévy-Khintchine representation of the geometric mean of many positive numbers and applications, Mathematical Inequalities & Applications 17 (2014), no. 2, 719–729; Available online at http://dx.doi.org/10.7153/mia-17-53. (WOS:000345461100024)
  10. Feng Qi, Xiao-Jing Zhang, and Wen-Hui Li, Lévy-Khintchine representations of the weighted geometric mean and the logarithmic mean, Mediterranean Journal of Mathematics 11 (2014), no. 2, 315–327; Available online at http://dx.doi.org/10.1007/s00009-013-0311-z. (WOS:000335233600007)
  11. Bai-Ni Guo and Feng Qi, Explicit formulae for computing Euler polynomials in terms of Stirling numbers of the second kind, Journal of Computational and Applied Mathematics 272 (2014), 251–257; Available online at http://dx.doi.org/10.1016/j.cam.2014.05.018. (WOS:000340336600018)
  12. Bai-Ni Guo and Feng Qi, Some identities and an explicit formula for Bernoulli and Stirling numbers, Journal of Computational and Applied Mathematics 255 (2014), 568–579; Available online at http://dx.doi.org/10.1016/j.cam.2013.06.020. (WOS:000326201800044)
  13. Yun Hua and Feng Qi, A double inequality for bounding Toader mean by the centroidal mean, Proceedings of the Indian Academy of Sciences (Mathematical Sciences) 124 (2014), no. 4, 527–531; Available online at http://dx.doi.org/10.1007/s12044-014-0183-6. (WOS:000349638700008)
  14. Yun Hua and Feng Qi, The best bounds for Toader mean in terms of the centroidal and arithmetic means, Filomat 28 (2014), no. 4, 775–780; Available online at http://dx.doi.org/10.2298/FIL1404775H. (WOS:000343244500013)
  15. Wei-Dong Jiang and Feng Qi, Sharp bounds for Neuman-Sándor’s mean in terms of the root-mean-square, Periodica Mathematica Hungarica 69 (2014), no. 2, 134–138; Available online at http://dx.doi.org/10.1007/s10998-014-0057-9. (WOS:000345288600005)
  16. Shu-Hong Wang and Feng Qi, Hermite-Hadamard type inequalities for $n$-times differentiable and preinvex functions, Journal of Inequalities and Applications 2014, 2014:49, 9 pages; Available online at http://dx.doi.org/10.1186/1029-242X-2014-49. (WOS:000332069900005)
  17. Ying Wu, Feng Qi, and Huan-Nan Shi, Schur-harmonic convexity for differences of some special means in two variables, Journal of Mathematical Inequalities 8 (2014), no. 2, 321–330; Available online at http://dx.doi.org/10.7153/jmi-08-23. (WOS:000339152000011)
  18. Bo-Yan Xi and Feng Qi, Hermite-Hadamard type inequalities for geometrically $r$-convex functions, Studia Scientiarum Mathematicarum Hungarica 51 (2014), no. 4, 530–546; Available online at http://dx.doi.org/10.1556/SScMath.51.2014.4.1294. (WOS:000345125700005)
  19. Jü Hua, Bo-Yan Xi, and Feng Qi, Inequalities of Hermite-Hadamard type involving an $s$-convex function with applications, Applied Mathematics and Computation 246 (2014), 752–760; Available online at http://dx.doi.org/10.1016/j.amc.2014.08.042. (WOS:000344473300067)
  20. Ye Shuang, Yan Wang, and Feng Qi, Some inequalities of Hermite-Hadamard type for functions whose third derivatives are $(\alpha,m)$-convex, Journal of Computational Analysis and Applications 17 (2014), no. 2, 272–279. (WOS:000330603500006)
  21. Lei-Lei Wang, Bo-Yan Xi, and Feng Qi, Necessary and sufficient conditions for identifying strictly geometrically $\alpha$-bidiagonally dominant matrices, University Politehnica of Bucharest Scientific Bulletin Series A—Applied Mathematics and Physics 76 (2014), no. 4, 57–66. (WOS:000346133600006)
  22. Yan Wang, Miao-Miao Zheng, and Feng Qi, Integral inequalities of Hermite-Hadamard type for functions whose derivatives are $(\alpha,m)$-preinvex, Journal of Inequalities and Applications  2014, 2014:97, 10 pages; Available online at http://dx.doi.org/10.1186/1029-242X-2014-97. (WOS:000332085200006)
  23. Bo-Yan Xi, Shu-Hong Wang, and Feng Qi, Some inequalities for $(h,m)$-convex functions, Journal of Inequalities and Applications 2014, 2014:100, 12 pages; Available online at http://dx.doi.org/10.1186/1029-242X-2014-100. (WOS:000333040800001)

Twenty-two papers indexed by the Science Citation Index (Expanded) in 2013

  1. Feng Qi, Integral representations and properties of Stirling numbers of the first kind, Journal of Number Theory 133 (2013), no. 7, 2307–2319; Available online at http://dx.doi.org/10.1016/j.jnt.2012.12.015. (WOS:000317323500011)
  2. Feng Qi, Limit formulas for ratios between derivatives of the gamma and digamma functions at their singularities, Filomat 27 (2013), no. 4, 601–604; Available online at http://dx.doi.org/10.2298/FIL1304601Q. (WOS:000322037500009)
  3. Feng Qi and Christian Berg, Complete monotonicity of a difference between the exponential and trigamma functions and properties related to a modified Bessel function, Mediterranean Journal of Mathematics 10 (2013), no. 4, 1683–1694; Available online at http://dx.doi.org/10.1007/s00009-013-0272-2. (WOS:000326048500005)
  4. Feng Qi, Pietro Cerone, and Sever S. Dragomir, Complete monotonicity of a function involving the divided difference of psi functions, Bulletin of the Australian Mathematical Society 88 (2013), no. 2, 309–319; Available online at http://dx.doi.org/10.1017/S0004972712001025. (WOS:000328202400015)
  5. Feng Qi and Qiu-Ming Luo, Bounds for the ratio of two gamma functions: from Wendel’s asymptotic relation to Elezović-Giordano-Pečarić‘s theorem, Journal of Inequalities and Applications 2013, 2013:542, 20 pages; Available online at http://dx.doi.org/10.1186/1029-242X-2013-542. (WOS:000332039300003)
  6. Feng Qi, Qiu-Ming Luo, and Bai-Ni Guo, Complete monotonicity of a function involving the divided difference of digamma functions, Science China Mathematics 56 (2013), no. 11, 2315–2325; Available online at http://dx.doi.org/10.1007/s11425-012-4562-0. (WOS:000326405000007)
  7. Feng Qi and Bo-Yan Xi, Some integral inequalities of Simpson type for GA-$\varepsilon$-convex functions, Georgian Mathematical Journal 20 (2013), no. 4, 775–788; Available online at http://dx.doi.org/10.1515/gmj-2013-0043. (WOS:000330223400010)
  8. Rui-Fang Bai, Feng Qi, and Bo-Yan Xi, Hermite-Hadamard type inequalities for the $m$- and $(\alpha,m)$-logarithmically convex functions, Filomat 27 (2013), no. 1, 1–7; Available online at http://dx.doi.org/10.2298/FIL1301001B. (WOS:000322027000001)
  9. Ling Chun and Feng Qi, Integral inequalities of Hermite-Hadamard type for functions whose third derivatives are convex, Journal of Inequalities and Applications 2013, 2013:451, 10 pages; Available online at http://dx.doi.org/10.1186/1029-242X-2013-451. (WOS:000332038100003)
  10. Bai-Ni Guo and Feng Qi, Monotonicity and logarithmic convexity relating to the volume of the unit ball, Optimization Letters 7 (2013), no. 6, 1139–1153; Available online at http://dx.doi.org/10.1007/s11590-012-0488-2. (WOS:000322391300007)
  11. Bai-Ni Guo and Feng Qi, Refinements of lower bounds for polygamma functions, Proceedings of the American Mathematical Society 141 (2013), no. 3, 1007–1015; Available online at http://dx.doi.org/10.1090/S0002-9939-2012-11387-5. (WOS:000326516700026)
  12. Yun Hua and Feng Qi, Sharp inequalities between the hyperbolic cosine function and the sine and cosine functions, Pakistan Journal of Statistics 29 (2013), no. 3, 315–321. (WOS:000323550000005)
  13. Wen-Hui Li and Feng Qi, Some Hermite-Hadamard type inequalities for functions whose $n$-th derivatives are $(\alpha,m)$-convex, Filomat 27 (2013), no. 8, 1575–1582; Available online at http://dx.doi.org/10.2298/FIL1308575L. (WOS:000329319100021)
  14. Shu-Hong Wang and Feng Qi, Inequalities of Hermite-Hadamard type for convex functions which are $n$-times differentiable, Mathematical Inequalities & Applications 16 (2013), no. 4, 1269–1278; Available online at http://dx.doi.org/10.7153/mia-16-97. (WOS:000332936000023)
  15. Bo-Yan Xi and Feng Qi, Some Hermite-Hadamard type inequalities for differentiable convex functions and applications, Hacettepe Journal of Mathematics and Statistics 42 (2013), no. 3, 243–257. (WOS:000324009500005)
  16. Li Yin and Feng Qi, Some integral inequalities on time scales, Results in Mathematics 64 (2013), no. 3, 371–381; Available online at http://dx.doi.org/10.1007/s00025-013-0320-z. (WOS:000326389000010)
  17. Bai-Ni Guo, Qiu-Ming Luo, and Feng Qi, Monotonicity results and inequalities for the inverse hyperbolic sine function, Journal of Inequalities and Applications 2013, 2013:536, 6 pages; Available online at http://dx.doi.org/10.1186/1029-242X-2013-536. (WOS:000332038800005)
  18. Bai-Ni Guo, Qiu-Ming Luo, and Feng Qi, Sharpening and generalizations of Shafer-Fink’s double inequality for the arc sine function, Filomat 27 (2013), no. 2, 261–265; Available online at http://dx.doi.org/10.2298/FIL1302261G. (WOS:000322027700005)
  19. Bai-Ni Guo, Jiao-Lian Zhao, and Feng Qi, A completely monotonic function involving the tri- and tetra-gamma functions, Mathematica Slovaca 63 (2013), no. 3, 469–478; Available online at http://dx.doi.org/10.2478/s12175-013-0109-2. (WOS:000321130600006)
  20. Sen-Lin Guo, Jian-Guo Xu, and Feng Qi, Some exact constants for the approximation of the quantity in the Wallis’ formula, Journal of Inequalities and Applications 2013, 2013:67, 7 pages; Available online at http://dx.doi.org/10.1186/1029-242X-2013-67. (WOS:000316355600002)
  21. Yan Sun, Hai-Tao Yang, and Feng Qi, Some inequalities for multiple integrals on the $n$-dimensional ellipsoid, spherical shell, and ball, Abstract and Applied Analysis 2013 (2013), Article ID 904721, 8 pages; Available online at http://dx.doi.org/10.1155/2013/904721. (WOS:000318771800001)
  22. Wei-Dong Jiang, Miao-Kun Wang, Yu-Ming Chu, Yue-Ping Jiang, and Feng Qi, Convexity of the generalized sine function and the generalized hyperbolic sine function, Journal of Approximation Theory 174 (2013), 1–9; Available online at http://dx.doi.org/10.1016/j.jat.2013.06.005. (WOS:000324281100001)

Nineteen papers indexed by the Science Citation Index (Expanded) in 2012

  1. Feng Qi and Bai-Ni Guo, Sharpening and generalizations of Shafer’s  inequality for the arc sine function, Integral Transforms and Special Functions 23 (2012), no. 2, 129–134; Available online at  http://dx.doi.org/10.1080/10652469.2011.564578. (WOS:000300186600005)
  2. Feng Qi and Qiu-Ming Luo, Bounds for the ratio of two gamma functions—From Wendel’s and related inequalities to logarithmically completely monotonic functions, Banach Journal of Mathematical Analysis 6 (2012), no. 2, 132–158; Available online at http://dx.doi.org/10.15352/bjma/1342210165. (WOS:000308738200009)
  3. Feng Qi, Qiu-Ming Luo, and Bai-Ni Guo, A simple proof of Oppenheim’s double inequality relating to the cosine and sine functions, Journal of Mathematical Inequalities 6 (2012), no. 4, 645-–654; Available online at http://dx.doi.org/10.7153/jmi-06-63. (WOS:000313393200016)
  4. Feng Qi, Chun-Fu Wei, and Bai-Ni Guo, Complete monotonicity of a function involving the ratio of gamma functions and applications, Banach Journal of Mathematical Analysis 6 (2012), no. 1, 35–44; Available online at http://dx.doi.org/10.15352/bjma/1337014663. (WOS:000297800200003)
  5. Bai-Ni Guo and Feng Qi, A completely monotonic function involving the tri-gamma function and with degree one, Applied Mathematics and Computation 218 (2012), no. 19, 9890–9897; Available online at http://dx.doi.org/10.1016/j.amc.2012.03.075. (WOS:000303531500032)
  6. Bai-Ni Guo and Feng Qi, Monotonicity of functions connected with the gamma function and the volume of the unit ball, Integral Transforms and Special Functions 23 (2012), no. 9, 701–708; Available online at http://dx.doi.org/10.1080/10652469.2011.627511. (WOS:000307931600006)
  7. Senlin Guo, Feng Qi, and H. M. Srivastava, A class of logarithmically completely monotonic functions related to the gamma function with applications, Integral Transforms and Special Functions 23 (2012), no. 8, 557–566; Available online at http://dx.doi.org/10.1080/10652469.2011.611331. (WOS:000307058300002)
  8. Wei-Dong Jiang and Feng Qi, Some sharp inequalities involving Seiffert and other means and their concise proofs, Mathematical Inequalities & Applications 15 (2012), no. 4, 1007–1017; Available online at http://dx.doi.org/10.7153/mia-15-86. (WOS:000310535900022)
  9. Bo-Yan Xi and Feng Qi, Some integral inequalities of Hermite-Hadamard type for convex functions with applications to means, Journal of Function Spaces and Applications 2012 (2012), Article ID 980438, 14 pages; Available online at http://dx.doi.org/10.1155/2012/980438. (WOS:000308173000001)
  10. Shu-Ping Bai, Shu-Hong Wang, and Feng Qi, Some Hermite-Hadamard type inequalities for $n$-time differentiable $(\alpha,m)$-convex functions, Journal of Inequalities and Applications 2012, 2012:267, 11 pages; Available online at http://dx.doi.org/10.1186/1029-242X-2012-267. (WOS:000313028200001)
  11. H. M. Srivastava, Senlin Guo, and Feng Qi, Some properties of a class of functions related to completely monotonic functions, Computers & Mathematics with Applications 64 (2012), no. 6, 1649–1654; Available online athttp://dx.doi.org/10.1016/j.camwa.2012.01.016. (WOS:000309248100011)
  12. Bo-Yan Xi, Rui-Fang Bai, and Feng Qi, Hermite-Hadamard type inequalities for the $m$- and $(\alpha,m)$-geometrically convex functions, Aequationes Mathematicae 84 (2012), no. 3, 261–269; Available online at http://dx.doi.org/10.1007/s00010-011-0114-x. (WOS:000311359700007)
  13. Li Yin, Qiu-Ming Luo, and Feng Qi, Several integral inequalities on time scales, Journal of Mathematical Inequalities 6 (2012), no. 3, 419–429; Available online at http://dx.doi.org/10.7153/jmi-06-39. (WOS:000308206800007)
  14. Tian-Yu Zhang, Ai-Ping Ji, and Feng Qi, On integral inequalities of Hermite-Hadamard type for $s$-geometrically convex functions, Abstract and Applied Analysis 2012 (2012), Article ID 560586, 14 pages; Available online at http://dx.doi.org/10.1155/2012/560586. (WOS:000309288700001)
  15. Jiao-Lian Zhao, Bai-Ni Guo, and Feng Qi, A refinement of a double inequality for the gamma function, Publicationes Mathematicae Debrecen 80 (2012), no. 3-4, 333–342; Available online at http://dx.doi.org/10.5486/PMD.2012.5010. (WOS:000304229000005)
  16. Jiao-Lian Zhao, Bai-Ni Guo, and Feng Qi, Complete monotonicity of two functions involving the tri- and tetra-gamma functions, Periodica Mathematica Hungarica 65 (2012), no. 1, 147–155; Available online at http://dx.doi.org/10.1007/s10998-012-9562-x. (WOS:000308876200011)
  17. Jiao-Lian Zhao, Qiu-Ming Luo, Bai-Ni Guo, and Feng Qi, Logarithmic convexity of Gini means, Journal of Mathematical Inequalities 6 (2012), no. 4, 509–516; Available online at http://dx.doi.org/10.7153/jmi-06-48. (WOS:000313393200001)
  18. Jiao-Lian Zhao, Qiu-Ming Luo, Bai-Ni Guo, and Feng Qi, Remarks on inequalities for the tangent function, Hacettepe Journal of Mathematics and Statistics 41 (2012), no. 4, 499–506. (WOS:000314375000007)
  19. Jiao-Lian Zhao, Chun-Fu Wei, Bai-Ni Guo, and Feng Qi, Sharpening and generalizations of Carlson’s double inequality for the arc cosine function, Hacettepe Journal of Mathematics and Statistics 41 (2012), no. 2, 201–209. (WOS:000308834600005)

Seven papers indexed by the Science Citation Index (Expanded) in 2011

  1. Bai-Ni Guo and Feng Qi, A class of completely monotonic functions involving divided differences of the psi and tri-gamma functions and some applications, Journal of the Korean Mathematical Society 48 (2011), no. 3, 655–667; Available online at http://dx.doi.org/10.4134/JKMS.2011.48.3.655. (WOS:000290348200014)
  2. Bai-Ni Guo and Feng Qi, An alternative proof of Elezović-Giordano-Pečarić’s theorem, Mathematical Inequalities & Applications 14 (2011), no. 1, 73–78; Available online at http://dx.doi.org/10.7153/mia-14-06. (WOS:000291112400006)
  3. Bai-Ni Guo and Feng Qi, An extension of an inequality for ratios of gamma functions, Journal of Approximation Theory 163 (2011), no. 9, 1208–1216; Available online at http://dx.doi.org/10.1016/j.jat.2011.04.003. (WOS:000294143300010)
  4. Bai-Ni Guo and Feng Qi, Sharp bounds for harmonic numbers, Applied Mathematics and Computation 218 (2011), no. 3, 991–995; Available online at http://dx.doi.org/10.1016/j.amc.2011.01.089. (WOS:000294298400064)
  5. Bai-Ni Guo and Feng Qi, Some bounds for the complete elliptic integrals of the first and second kinds, Mathematical Inequalities & Applications 14 (2011), no. 2, 323–334; Available online at http://dx.doi.org/10.7153/mia-14-26. (WOS:000291112700006)
  6. Bai-Ni Guo and Feng Qi, The function $(b^x-a^x)/x$: Logarithmic convexity and applications to extended mean values, Filomat 25 (2011), no. 4, 63–73; Available online at http://dx.doi.org/10.2298/FIL1104063G. (WOS:000297198500006)
  7. Zhen-Hong Huo, Da-Wei Niu, Jian Cao and Feng Qi, A generalization of Jordan’s inequality and an application, Hacettepe Journal of Mathematics and Statistics 40 (2011), no. 1, 53–61. (WOS:000289043400006)

Fourteen papers indexed by the Science Citation Index (Expanded) in 2010

  1. Feng Qi, Bounds for the ratio of two gamma functions, Journal of Inequalities and Applications 2010 (2010), Article ID 493058, 84 pages; Available online at http://dx.doi.org/10.1155/2010/493058. (WOS:000277841500001)
  2. Feng Qi and Bai-Ni Guo, A logarithmically completely monotonic function involving the gamma function, Taiwanese Journal of Mathematics 14 (2010), no. 4, 1623–1628. (WOS:000280687100028)
  3. Feng Qi and Bai-Ni Guo, Necessary and sufficient conditions for functions involving the tri- and tetra-gamma functions to be completely monotonic, Advances in Applied Mathematics 44 (2010), no. 1, 71–83; Available online at http://dx.doi.org/10.1016/j.aam.2009.03.003. (WOS:000271794300005)
  4. Feng Qi and Bai-Ni Guo, Some logarithmically completely monotonic functions related to the gamma function, Journal of the Korean Mathematical Society 47 (2010), no. 6, 1283–1297; Available online at http://dx.doi.org/10.4134/JKMS.2010.47.6.1283. (WOS:000284189900012)
  5. Feng Qi and Bai-Ni Guo, Some properties of extended remainder of Binet’s first formula for logarithm of gamma function, Mathematica Slovaca 60 (2010), no. 4, 461–470; Available online at http://dx.doi.org/10.2478/s12175-010-0025-7. (WOS:000279698300004)
  6. Feng Qi, Senlin Guo and Bai-Ni Guo, Complete monotonicity of some functions involving polygamma functions, Journal of Computational and Applied Mathematics 233 (2010), no. 9, 2149–2160; Available online at http://dx.doi.org/10.1016/j.cam.2009.09.044. (WOS:000274605100004)
  7. Chao-Ping Chen, Feng Qi and H. M. Srivastava, Some properties of functions related to the gamma and psi functions, Integral Transforms and Special Functions 21 (2010), no. 2, 153–164; Available online at http://dx.doi.org/10.1080/10652460903064216. (WOS:000272613200007)
  8. Bai-Ni Guo and Feng Qi, A property of logarithmically absolutely monotonic functions and the logarithmically complete monotonicity of a power-exponential function, University Politehnica of Bucharest Scientific Bulletin Series A—Applied Mathematics and Physics 72 (2010), no. 2, 21–30. (WOS:000278871400003)
  9. Bai-Ni Guo and Feng Qi, Sharpening and generalizations of Carlson’s inequality for the arc cosine function, Hacettepe Journal of Mathematics and Statistics 39 (2010), no. 3, 403–409. (WOS:000283892900011)
  10. Bai-Ni Guo and Feng Qi, Some properties of the psi and polygamma functions, Hacettepe Journal of Mathematics and Statistics 39 (2010), no. 2, 219–231. (WOS:000280830400009)
  11. Bai-Ni Guo and Feng Qi, Two new proofs of the complete monotonicity of a function involving the psi function, Bulletin of the Korean Mathematical Society 47 (2010), no. 11, 103–111; Available online at http://dx.doi.org/10.4134/BKMS.2010.47.1.103. (WOS:000274756700010)
  12. Bai-Ni Guo, Feng Qi and H. M. Srivastava, Some uniqueness results for the non-trivially complete monotonicity of a class of functions involving the polygamma and related functions, Integral Transforms and Special Functions 21 (2010), no. 11, 849–858; Available online at http://dx.doi.org/10.1080/10652461003748112. (WOS:000283557100006)
  13. Mohammad Masjed-Jamei, Feng Qi and H. M. Srivastava, Generalizations of some classical inequalities via a special functional property, Integral Transforms and Special Functions 21 (2010), no. 5, 327–336; Available online at http://dx.doi.org/10.1080/10652460903259915. (WOS:000276718100002)
  14. Da-Wei Niu, Jian Cao and Feng Qi, Generalizations of Jordan’s inequality and concerned relations, University Politehnica of Bucharest Scientific Bulletin Series A—Applied Mathematics and Physics 72 (2010), no. 3, 85–98. (WOS:000282020500008)

Eleven papers indexed by the Science Citation Index (Expanded) in 2009

  1. Feng Qi, A class of logarithmically completely monotonic functions and application to the best bounds in the second Gautschi-Kershaw’s inequality, Journal of Computational and Applied Mathematics 224 (2009), no. 2, 538–543; Available online at http://dx.doi.org/10.1016/j.cam.2008.05.030. (WOS:000263189200008)
  2. Feng Qi, Pietro Cerone, Sever S. Dragomir and H. M. Srivastava, Alternative proofs for monotonic and logarithmically convex properties of one-parameter mean values, Applied Mathematics and Computation 208 (2009), no. 1, 129–133; Available online at http://dx.doi.org/10.1016/j.amc.2008.11.023. (WOS:000262883400014)
  3. Feng Qi and Bai-Ni Guo, Completely monotonic functions involving divided differences of the di- and tri-gamma functions and some applications, Communications on Pure and Applied Analysis 8 (2009), no. 6, 1975–1989; Available online at http://dx.doi.org/10.3934/cpaa.2009.8.1975. (WOS:000269220800015)
  4. Feng Qi, Da-Wei Niu and Bai-Ni Guo, Refinements, generalizations, and applications of Jordan’s inequality and related problems, Journal of Inequalities and Applications 2009 (2009), Article ID 271923, 52 pages; Available online at http://dx.doi.org/10.1155/2009/271923. (WOS:000270605800001)
  5. Feng Qi and Anthony Sofo, An alternative and united proof of a double inequality for bounding the arithmetic-geometric mean, University Politehnica of Bucharest Scientific Bulletin Series A—Applied Mathematics and Physics 71 (2009), no. 3, 69–76. (WOS:000268816300007)
  6. Feng Qi, Shi-Qin Zhang and Bai-Ni Guo, Sharpening and generalizations of Shafer’s inequality for the arc tangent function, Journal of Inequalities and Applications 2009 (2009), Article ID 930294, 9 pages; Available online at http://dx.doi.org/10.1155/2009/930294. (WOS:000270607500001)
  7. Bai-Ni Guo and Feng Qi, A simple proof of logarithmic convexity of extended mean values, Numerical Algorithms 52 (2009), 89–92; Available online at http://dx.doi.org/10.1007/s11075-008-9259-7. (WOS:000268727900005)
  8. Bai-Ni Guo and Feng Qi, Properties and applications of a function involving exponential functions, Communications on Pure and Applied Analysis 8 (2009), no. 4, 1231–1249; Available online at http://dx.doi.org/10.3934/cpaa.2009.8.1231. (WOS:000265190400004)
  9. Senlin Guo and Feng Qi, A class of logarithmically completely monotonic functions associated with the gamma function, Journal of Computational and Applied Mathematics 224 (2009), no. 1, 127–132; Available online at http://dx.doi.org/10.1016/j.cam.2008.04.028. (WOS:000261980200012)
  10. Abdolhossein Hoorfar and Feng Qi, Sums of series of Rogers dilogarithm functions, The Ramanujan Journal 18 (2009), no. 2, 231–238; Available online at http://dx.doi.org/10.1007/s11139-007-9043-7. (WOS:000263156300006)
  11. Yu Miao and Feng Qi, Several $q$-integral inequalities, Journal of Mathematical Inequalities 3 (2009), no. 1, 115–121; Available online at http://dx.doi.org/10.7153/jmi-03-11. (WOS:000208046000011)

Twelve papers indexed by the Science Citation Index (Expanded) in 2008

  1. Feng Qi, A new lower bound in the second Kershaw’s double inequality, Journal of Computational and Applied Mathematics 214 (2008), no. 2, 610–616; Available online at http://dx.doi.org/10.1016/j.cam.2007.03.016. (WOS:000254637700021)

  2. Feng Qi, Jian Cao and Da-Wei Niu, A generalization of van der Corput’s inequality, Applied Mathematics and Computation 203 (2008), no. 2, 770–777; Available online at http://dx.doi.org/10.1016/j.amc.2008.05.054. (WOS:000259313700031)

  3. Feng Qi and Bai-Ni Guo, A class of logarithmically completely monotonic functions and the best bounds in the second Kershaw’s double inequality, Journal of Computational and Applied Mathematics 212 (2008), no. 2, 444–456; Available online at http://dx.doi.org/10.1016/j.cam.2006.12.022. (WOS:000253149100024)

  4. Feng Qi and Bai-Ni Guo, Wendel’s and Gautschi’s inequalities: Refinements, extensions, and a class of logarithmically completely monotonic functions, Applied Mathematics and Computation 205 (2008), no. 1, 281–290; Available online at http://dx.doi.org/10.1016/j.amc.2008.07.005. (WOS:000260585900027)

  5. Feng Qi, Senlin Guo and Shou-Xin Chen, A new upper bound in the second Kershaw’s double inequality and its generalizations, Journal of Computational and Applied Mathematics 220 (2008), no. 1-2, 111–118; Available online at http://dx.doi.org/10.1016/j.cam.2007.07.037. (WOS:000258636800012)

  6. Feng Qi, Senlin Guo, Bai-Ni Guo and Shou-Xin Chen, A class of $k$-log-convex functions and their applications to some special functions, Integral Transforms and Special Functions 19 (2008), no. 3, 195–200; Available online at http://dx.doi.org/10.1080/10652460701722627. (WOS:000255905700005)

  7. Feng Qi, Xiao-Ai Li and Shou-Xin Chen, Refinements, extensions and generalizations of the second Kershaw’s double inequality, Mathematical Inequalities & Applications 11 (2008), no. 3, 457–465; Available online at http://dx.doi.org/10.7153/mia-11-35. (WOS:000257877600006)

  8. Feng Qi, Qiu-Ming Luo and Bai-Ni Guo, Darboux’s formula with integral remainder of functions with two independent variables, Applied Mathematics and Computation 199 (2008), no. 2, 691–703; Available online at http://dx.doi.org/10.1016/j.amc.2007.10.028. (WOS:000255320900029)

  9. Feng Qi, Da-Wei Niu, Jian Cao and Shou-Xin Chen, Four logarithmically completely monotonic functions involving gamma function, Journal of the Korean Mathematical Society 45 (2008), no. 2, 559–573; Available online at http://dx.doi.org/10.4134/JKMS.2008.45.2.559. (WOS:000253869100018)

  10. Senlin Guo, Feng Qi and Hari M. Srivastava, Supplements to a class of logarithmically completely monotonic functions associated with the gamma function, Applied Mathematics and Computation 197 (2008), no. 2, 768–774; Available online at http://dx.doi.org/10.1016/j.amc.2007.08.011. (WOS:000254254200032)
  11. Abdolhossein Hoorfar and Feng Qi, A new refinement of Young’s inequality, Mathematical Inequalities & Applications 11 (2008), no. 4, 689–692; Available online at http://dx.doi.org/10.7153/mia-11-58. (WOS:000260346000009)

  12. Da-Wei Niu, Zhen-Hong Huo, Jian Cao and Feng Qi, A general refinement of Jordan’s inequality and a refinement of L. Yang’s inequality, Integral Transforms and Special Functions 19 (2008), no. 3, 157–164; Available online at http://dx.doi.org/10.1080/10652460701635886. (WOS:000255905700001)

Ten papers indexed by the Science Citation Index (Expanded) in 2007

  1. Feng Qi, A class of logarithmically completely monotonic functions and the best bounds in the first Kershaw’s double inequality, Journal of Computational and Applied Mathematics 206 (2007), no. 2, 1007–1014; Available online at http://dx.doi.org/10.1016/j.cam.2006.09.005. (WOS:000247839500031)
  2. Feng Qi, A completely monotonic function involving the divided difference of the psi function and an equivalent inequality involving sums, The Australian & New Zealand Industrial and Applied Mathematics Journal 48 (2007), no. 4, 523–532; Available online at http://dx.doi.org/10.1017/S1446181100003199. (WOS:000249308500006)
  3. Feng Qi, Three classes of logarithmically completely monotonic functions involving gamma and psi functions, Integral Transforms and Special Functions 18 (2007), no. 7, 503–509; Available online at http://dx.doi.org/10.1080/10652460701358976. (WOS:000248050400007)
  4. Feng Qi and Shou-Xin Chen, Complete monotonicity of the logarithmic mean, Mathematical Inequalities & Applications 10 (2007), no. 4, 799–804; Available online at http://dx.doi.org/10.7153/mia-10-73. (WOS:000250470600009)
  5. Feng Qi, Shou-Xin Chen and Chao-Ping Chen, Monotonicity of ratio between the generalized logarithmic means, Mathematical Inequalities & Applications 10 (2007), no. 3, 559–564; Available online at http://dx.doi.org/10.7153/mia-10-52. (WOS:000248397000008)
  6. Feng Qi, Shou-Xin Chen and Wing-Sum Cheung, Logarithmically completely monotonic functions concerning gamma and digamma functions, Integral Transforms and Special Functions 18 (2007), no. 6, 435–443; Available online at http://dx.doi.org/10.1080/10652460701318418. (WOS:000246744500006)
  7. Feng Qi, Bai-Ni Guo, Senlin Guo and Shou-Xin Chen, A function involving gamma function and having logarithmically absolute convexity, Integral Transforms and Special Functions 18 (2007), no. 11, 837–843; Available online at http://dx.doi.org/10.1080/10652460701528875. (WOS:000251519200005)
  8. Wing-Sum Cheung and Feng Qi, Logarithmic convexity of the one-parameter mean values, Taiwanese Journal of Mathematics 11 (2007), no. 1, 231–237. (WOS:000245526600019)
  9. Senlin Guo, Feng Qi and H. M. Srivastava, Necessary and sufficient conditions for two classes of functions to be logarithmically completely monotonic, Integral Transforms and Special Functions 18 (2007), no. 11, 819–826; Available online at http://dx.doi.org/10.1080/10652460701528933. (WOS:000251519200003)
  10. Abdolhossein Hoorfar and Feng Qi, Some new bounds for Mathieu’s series, Abstract and Applied Analysis 2007 (2007), Article ID 94854, 10 pages; Available online at http://dx.doi.org/10.1155/2007/94854. (WOS:000254316800001)

Eight papers indexed by the Science Citation Index (Expanded) in 2006

  1. Feng Qi and Bai-Ni Guo, Monotonicity of sequences involving convex function and sequence, Mathematical Inequalities & Applications 9 (2006), no. 2, 247–254; Available online at http://dx.doi.org/10.7153/mia-09-25. (WOS:000237579800007)
  2. Feng Qi, Bai-Ni Guo and Chao-Ping Chen, Some completely monotonic functions involving the gamma and polygamma functions, Journal of the Australian Mathematical Society 80 (2006), no. 1, 81–88; Available online at http://dx.doi.org/10.1017/S1446788700011393. (WOS:000236521700005)
  3. Feng Qi, Bai-Ni Guo and Chao-Ping Chen, The best bounds in Gautschi-Kershaw inequalities, Mathematical Inequalities & Applications 9 (2006), no. 3, 427–436; Available online at http://dx.doi.org/10.7153/mia-09-41. (WOS:000239398500005).
  4. Feng Qi, Qiao Yang and Wei Li, Two logarithmically completely monotonic functions connected with gamma function, Integral Transforms and Special Functions 17 (2006), no. 7, 539–542; Available online at http://dx.doi.org/10.1080/10652460500422379. (WOS:000238564800008)
  5. Chao-Ping Chen and Feng Qi, Logarithmically completely monotonic functions relating to the gamma function, Journal of Mathematical Analysis and Applications 321 (2006), no. 1, 405–411; Available online at http://dx.doi.org/10.1016/j.jmaa.2005.08.056. (WOS:000238807700034)
  6. Chao-Ping Chen and Feng Qi, Monotonicity properties and inequalities of functions related to means, Rocky Mountain Journal of Mathematics 36 (2006), no. 3, 857–865; Available online at http://dx.doi.org/10.1216/rmjm/1181069432. (WOS:000240480800005)
  7. Bai-Ni Guo and Feng Qi, Monotonicity of sequences involving geometric means of positive sequences with monotonicity and logarithmical convexity, Mathematical Inequalities & Applications 9 (2006), no. 1, 1–9; Available online at http://dx.doi.org/10.7153/mia-09-01. (WOS:000235327900001)
  8. Huan-Nan Shi, Shan-He Wu and Feng Qi, An alternative note on the Schur-convexity of the extended mean values, Mathematical Inequalities & Applications 9 (2006), no. 2, 219–224; Available online at http://dx.doi.org/10.7153/mia-09-22. (WOS:000237579800004)

Six papers indexed by the Science Citation Index (Expanded) in 2005

  1. Feng Qi, A note on Schur-convexity of extended mean values, Rocky Mountain Journal of Mathematics 35 (2005), no. 5, 1787–1793; Available online at http://dx.doi.org/10.1216/rmjm/1181069663. (WOS:000235750700020)
  2. Feng Qi, Pietro Cerone and Sever S. Dragomir, Some new Iyengar type inequalities, Rocky Mountain Journal of Mathematics 35 (2005), no. 3, 997–1015; Available online at http://dx.doi.org/10.1216/rmjm/1181069718. (WOS:000230613200016)
  3. Feng Qi, Run-Qing Cui, Chao-Ping Chen and Bai-Ni Guo, Some completely monotonic functions involving polygamma functions and an application, Journal of Mathematical Analysis and Applications 310 (2005), no. 1, 303–308; Available online at http://dx.doi.org/10.1016/j.jmaa.2005.02.016. (WOS:000231576500024)
  4. Feng Qi, József Sándor, Sever S. Dragomir and Anthony Sofo, Notes on the Schur-convexity of the extended mean values, Taiwanese Journal of Mathematics 9 (2005), no. 3, 411–420. (WOS:000231936200006)
  5. Feng Qi, Zong-Li Wei and Qiao Yang, Generalizations and refinements of Hermite-Hadamard’s inequality, Rocky Mountain Journal of Mathematics 35 (2005), no. 1, 235–251; Available online at http://dx.doi.org/10.1216/rmjm/1181069779. (WOS:000227004400015)
  6. Chao-Ping Chen and Feng Qi, The best bounds in Wallis’ inequality, Proceedings of the American Mathematical Society 133 (2005), no. 2, 397–401; Available online at http://dx.doi.org/10.1090/S0002-9939-04-07499-4. (WOS:000224695400011)

One paper indexed by the Science Citation Index (Expanded) in 2004

  1. Feng Qi and Chao-Ping Chen, A complete monotonicity property of the gamma function, Journal of Mathematical Analysis and Applications 296 (2004), no. 2, 603–607; Available online at http://dx.doi.org/10.1016/j.jmaa.2004.04.026. (WOS:000223086700020)

Eight papers indexed by the Science Citation Index (Expanded) in 2003

  1. Feng Qi and Bai-Ni Guo, An inequality between ratio of the extended logarithmic means and ratio of the exponential means, Taiwanese Journal of Mathematics 7 (2003), no. 2, 229–237. (WOS:000183943700005)

  2. Chao-Ping Chen, Feng Qi, Pietro Cerone and Sever S. Dragomir, Monotonicity of sequences involving convex and concave functions, Mathematical Inequalities & Applications 6 (2003), no. 2, 229–239; Available online at http://dx.doi.org/10.7153/mia-06-22. (WOS:000182783200005)

  3. Bai-Ni Guo and Feng Qi, Estimates for an integral in $L^p$ norm of the $(n+1)$-th derivative of its integrand, The 7th International Conference on Nonlinear Functional Analysis and Applications, Chinju, South Korea, August 6-10, 2001; Inequality Theory and Applications, Volume 3, Yeol Je Cho, Jong Kyu Kim, and Sever S. Dragomir (Eds), Nova Science Publishers, Hauppauge, NY, ISBN 1-59033-891-X, 2003, pp. 127–131. (CDSTIC.ISTP.699644, WOS:000189432200006)

  4. Bai-Ni Guo and Feng Qi, Inequalities and monotonicity for the ratio of gamma functions, Taiwanese Journal of Mathematics 7 (2003), no. 2, 239–247. (WOS:000183943700006)

  5. Qiu-Ming Luo, Feng Qi, Neil S. Barnett and Sever S. Dragomir, Inequalities involving the sequence \sqrt[3]{a+\sqrt[3]{a+\dotsm+\sqrt[3]{a}}}, Mathematical Inequalities & Applications 6 (2003), no. 3, 413–419; Available online at http://dx.doi.org/10.7153/mia-06-38. (WOS:000184398500005).

  6. Tsz Ho Chan, Peng Gao and Feng Qi, On a generalization of Martins’ inequality, Monatshefte für Mathematik 138 (2003), no. 3, 179–187; Available online at http://dx.doi.org/10.1007/s00605-002-0524-x. (WOS:000182074300001)

  7. Bai-Ni Guo, Wei Li, and Feng Qi, Proofs of Wilker’s inequalities involving trigonometric functions, The 7th International Conference on Nonlinear Functional Analysis and Applications, Chinju, South Korea, August 6-10, 2001; Inequality Theory and Applications, Volume 3, Yeol Je Cho, Jong Kyu Kim, and Sever S. Dragomir (Eds), Nova Science Publishers, Hauppauge, NY, ISBN 1-59033-866-9, 2003, pp. 109–112. (CDSTIC.ISTP.699286, WOS:000189215500009)

  8. Bai-Ni Guo, Bao-Min Qiao, Feng Qi and Wei Li, On new proofs of Wilker’s inequalities involving trigonometric functions, Mathematical Inequalities & Applications 6 (2003), no. 1, 19–22; Available online at http://dx.doi.org/10.7153/mia-06-02. (WOS:000180752000002).

Three papers indexed by the Science Citation Index (Expanded) in 2002

  1. Feng Qi, Logarithmic convexity of extended mean values, Proceedings of the American Mathematical Society 130 (2002), no. 6, 1787–1796; Available online at http://dx.doi.org/10.1090/S0002-9939-01-06275-X. (WOS:000173974500030)
  2. Feng Qi, Monotonicity results and inequalities for the gamma and incomplete gamma functions, Mathematical Inequalities & Applications 5 (2002), no. 1, 61–67; Available online at http://dx.doi.org/10.7153/mia-05-08. (WOS:000173815200008)
  3. Feng Qi and Bai-Ni Guo, On Steffensen pairs, Journal of Mathematical Analysis and Applications 271 (2002), no. 2, 534–541; Available online at http://dx.doi.org/10.1016/S0022-247X(02)00120-8. (WOS:000178102400016)

Three papers indexed by the Science Citation Index (Expanded) in 2001

  1. Feng Qi, Inequalities for a weighted multiple integral, Journal of Mathematical Analysis and Applications 253 (2001), no. 2, 381–388; Available online at http://dx.doi.org/10.1006/jmaa.2000.7138. (WOS:000166347200002)
  2. Feng Qi, Jun-Xiang Cheng, and Gang Wang, New Steffensen pairs, The 6th International Conference on Nonlinear Functional Analysis and Applications, Chinju, South Korea, September 1-5, 2000; Inequality Theory and Applications, Volume 1, Yeol Je Cho, Jong Kyu Kim, and Sever S. Dragomir (Eds), Nova Science Publishers, Hauppauge, NY, ISBN 1-59033-188-5, 2001, pp. 273–279. (WOS:000175830000018)
  3. Bai-Ni Guo and Feng Qi, Inequalities for generalized weighted mean values of convex function, Mathematical Inequalities & Applications 4 (2001), no. 2, 195–202; Available online at http://dx.doi.org/10.7153/mia-04-17. (WOS:000168132600003)

One paper indexed by the Science Citation Index (Expanded) in 2000

  1. Feng Qi, Jia-Qiang Mei, Da-Feng Xia and Sen-Lin Xu, New proofs of weighted power mean inequalities and monotonicity for generalized weighted mean values, Mathematical Inequalities & Applications 3 (2000), no. 3, 377–383; Available online at http://dx.doi.org/10.7153/mia-03-38. (WOS:000088150300007)

Seven papers indexed by the Science Citation Index (Expanded) in 1999

  1. Feng Qi, Generalization of H. Alzer’s inequality, Journal of Mathematical Analysis and Applications 240 (1999), no. 1, 294–297; Available online at http://dx.doi.org/10.1006/jmaa.1999.6587. (WOS:000084008400020)
  2. Feng Qi, Inequalities for a multiple integral, Acta Mathematica Hungarica 84 (1999), no. 1-2, 19–26; Available online at http://dx.doi.org/10.1023/A:1006642601341. (WOS:000081495600003)
  3. Feng Qi, Li-Hong Cui and Sen-Lin Xu, Some inequalities constructed by Tchebysheff’s integral inequality, Mathematical Inequalities & Applications 2 (1999), no. 4, 517–528; Available online at http://dx.doi.org/10.7153/mia-02-42. (WOS:000083319800005)
  4. Feng Qi and Sen-Lin Guo, Inequalities for the incomplete gamma and related functions, Mathematical Inequalities and Applications 2 (1999), no. 1, 47–53; Available online at http://dx.doi.org/10.7153/mia-02-05. (WOS:000078232200005)
  5. Feng Qi and Jia-Qiang Mei, Some inequalities of the incomplete gamma and related functions, Zeitschrift für Analysis und ihre Anwendungen 18 (1999), no. 3, 793–799; Available online at http://dx.doi.org/10.4171/ZAA/914. (WOS:000208764600020)
  6. Feng Qi and Shi-Qin Zhang, Note on monotonicity of generalized weighted mean values, Proceedings of the Royal Society of London Series A—Mathematical, Physical and Engineering Sciences 455 (1999), no. 1989, 3259–3260; Available online at http://dx.doi.org/10.1098/rspa.1999.0449. (WOS:000082654900004)
  7. Sen-Lin Guo and Feng Qi, Recursion formulae for $\sum_{m=1}^nm^k$, Zeitschrift für Analysis und ihre Anwendungen 18 (1999), no. 4, 1123–1130; Available online at http://dx.doi.org/10.4171/ZAA/933. (WOS:000208818700019)

Four papers indexed by the Science Citation Index (Expanded) in 1998

  1. Feng Qi, Generalized weighted mean values with two parameters, Proceedings of the Royal Society of London Series A—Mathematical, Physical and Engineering Sciences 454 (1998), no. 1978, 2723–2732; Available online at http://dx.doi.org/10.1098/rspa.1998.0277. (WOS:000076565600008)
  2. Feng Qi and Qiu-Ming Luo, A simple proof of monotonicity for extended mean values, Journal of Mathematical Analysis and Applications 224 (1998), 356–359; Available online at http://dx.doi.org/10.1006/jmaa.1998.6003. (WOS:000075413500012)
  3. Feng Qi and Sen-Lin Xu, The function $(b^x-a^x)/x$: Inequalities and properties, Proceedings of the American Mathematical Society 126 (1998), no. 11, 3355–3359; Available online at http://dx.doi.org/10.1090/S0002-9939-98-04442-6. (WOS:000076507700031)
  4. Josip Pečarić, Feng Qi,  V. Šimić and Sen-Lin Xu, Refinements and extensions of an inequality, III, Journal of Mathematical Analysis and Applications 227 (1998), no. 2, 439–448; Available online at http://dx.doi.org/10.1006/jmaa.1998.6104. (WOS:000077121700008)

One paper indexed by the Science Citation Index (Expanded) in 1997

  1. Feng Qi and Sen-Lin Xu, Refinements and extensions of an inequality, II, Journal of Mathematical Analysis and Applications 211 (1997), no. 2, 616–620; Available online at http://dx.doi.org/10.1006/jmaa.1997.5318. (WOS:A1997XL39000015)

Related Links-相关链接:

  1. Some papers indexed by the Emerging Sources Citation Index since 20162016年以来被Emerging Sources Citation Index索引的部分论文.
  2. Feng Qi, Some Papers Authored by Professor Dr. Feng Qi and Indexed by the Web of Science and the Engineering Village Since 1997, ResearchGate Technical Report.
  3. Feng Qi, The List of Papers and Preprints Authored by Professor Dr. Feng Qi Since 1993, ResearchGate Technical Report.
  4. Google Scholar Citations
  5. MathSciNet Author Profile
  6. ResearchGate Profile
  7. Academia Profile
  8. ORCiD
  9. Scopus
  10. DBLP
  11. Kudos
  12. Zentralblatt MATH Author Profile
  13. Microsoft Academic Search
  14. LinkedIn
  15. WikiPedia
  16. OneDrive
  17. Mendeley

scholar_logo_md_2011

profile_share_badge

scopus1-1gg

orcid-logomy_orcid_qrcode

logo

persengKudos

blue_white

zbMATH

MathSciNet-logo

arXiv_logo

Polya-MIA-3829 3

Microsoft-Academic-logo

academia-edu

OneDrive

logo-mendeley

Advertisements

About qifeng618

Professor in Mathematics
This entry was posted in Academics, Homepage, Teaching and Education. Bookmark the permalink.

One Response to Some papers indexed by the Science Citation Index (Expanded) since 1997 by Feng Qi

  1. What is mathematics? A theory or doctrine which is idealized, abstracted, symbolized, axiomatized, and logicalized.

    Like

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s